Infektion und Immunität
in geschichtlicher Beleuchtung

Akademische Rede
zur Jahresfeier der Hessischen Ludwigs-Universität
am 1. Juli 1927

gehalten von dem derzeitigen Rektor
Dr. med. vet. et sc. nat. Wilhelm Zwick
Professor der Veterinärhygiene und Seuchenlehre
Hochansehnliche Versammlung!
Sehr verehrte Herren Kollegen!
Liebe Kommilitonen!

Auf eine 320 jährige Vergangenheit kann die Universität in diesem Jahre zurückblicken. Wie alljährlich gedenken wir auch jetzt in tiefempfundener Dankbarkeit des hochgesinnten Stifters unserer Ludoviciana und des letzten Rector magnificientissimus, unter dessen Huld und Fürsorge sie sich hoher Blüte erfreuen durfte.

Schwere Stürme sind unterdessen über uns hinweggegangen. Sie fanden ihren Widerhall in den Ansprachen meiner Herren Amtsvorgänger an dieser Stelle. Obwohl heute das wissenschaftliche Leben an unserer alma mater in ruhigeren Bahnen sich vollzieht und die Sorge der Stunde etwas gemildert ist, so ist doch die Notlage immer noch groß genug, um uns mit allem Ernst der Zukunft entgegenblicken zu lassen.

Um so mehr und um so dankbarer anerkennen wir die Opferwilligkeit der Volksvertretung und der Staatsregierung, die uns auch im vergangenen Jahre zuteil geworden ist trotz der schweren Lasten, die unser besonders hart bedrücktes, noch immer unter dem Druck der Besatzung leidendes, in seiner freien Entwicklung gehemmtes und finanziell schwer geschädigtes Hessenland zu tragen hat. Mit unserer Staatsregierung vertrauen auch wir, daß dieser Druck bald von uns genommen oder wenigstens gemildert werden möge.

Unser wärmster Dank sei ausgesprochen der Stadtverwaltung unserer Universitätsstadt Gießen, deren Geschick mit dem unserigen so innig verbunden ist, und die uns früher schon öfter, aber ganz besonders reich in diesem Jahre mit Stiftungen bedacht hat; sie werden in der Chronik im einzelnen noch mitgeteilt werden. Möge das Gefühl des innigen Verbundenseins, das in diesen Spenden seinen Ausdruck findet, auch fernerhin
wach bleiben. Wir werden es gewiß stets gern und freudig erwidern.


Gerade in den letzten Tagen ertönte ein gellender Notschrei der deutschen Wissenschaft. Er ließ das deutsche Volk und die deutsche Regierung aufhorchen, denn er kam aus schwer bedrängter Brust, die um Sein oder Nichtsein kämpfte. Wir hoffen und wünschen, daß das letzte und teuerste Gut, das Deutschland noch geblieben, seine Wissenschaft, die es groß gemacht und die es wieder hochbringen wird, wenn man ihr die nötige Sorgfalt und Pflege angedeihen läßt, nicht auch noch geopfert werde.

Als Vertreter der Universität habe ich mich dem Appell an die Reichsregierung, der von den deutschen Hochschulen, von führenden Organisationen und Persönlichkeiten ausging, ange schlossen. Möge er nicht ungehört verhallen!

Meine sehr verehrten Damen und Herren!

Altem Brauche folgend möchte ich nun über ein Thema aus meinem Arbeitsgebiete sprechen. Für den Vertreter der Veter inärhygiene und Tierseuchenlehre und eines für diese Lehr- und Forschungsgebiete bestimmten Instituts, das in den letzten Jahren dank dem Entgegenkommen der Regierung und der Volksvertretung hier neu errichtet und für das ein besonderes Ordinariat geschaffen wurde, liegt es nahe, ein Thema zu wählen, das sich auf Infektionskrankheiten, auf Seuchen bezieht.

Ich will sprechen über:

Infektion und Immunität in geschichtlicher Beleuchtung.

Vorweg zum Verständnis des Ganzen einige Bemerkungen! Menschenseuchen und Tierseuchen sind wesensverwandt. Beobachtungen und Forschungen, die an jenen angestellt und Ergebnisse, die dort gewonnen wurden, können auf diese mutatis

Den Tierseuchen kommt aber in erster Linie eine erhebliche volks- und landwirtschaftliche Bedeutung zu.


Wenn man ferner berücksichtigt, daß andere sehr stark verbreitete und gefährliche Tierseuchen, wie z. B. die mit sehr erheblichen Verlusten an Zucht-, Arbeits-, Fleisch- und Milchleistung einhergehende Tuberkulose unter den Viehbeständen jahraus, jahrein herrschen, so wird man eine ungefähre Vorstellung von der erschreckenden Größe der jährlichen wirtschaft-
lichen Gesamtverluste gewinnen können, wie sie im Gefolge der Tierseuchen sich ergeben.

Gehe ich nach dieser Vorbemerkung auf das mir gestellte Thema über, so darf ich erwähnen, daß die Geschichte der Seuchen und der Seuchenforschung eng verbunden ist mit der Kulturgeschichte und daß auch in ihr der Geist der Zeiten sich widerspiegelt.


Max von Pettenkofer umschrieb gegen die Mitte des 19. Jahrhunderts die miasmatischen Krankheiten einerseits und die kontagiösen andererseits des näheren und bezeichnete als abgrenzendes Merkmal der erstgenannten ihre Entwicklung in der Außenwelt, ihr Eindringen von außen in den Körper, — während als kontagiöse diejenigen Krankheiten angesprochen wur-
den, die vom kranken Organismus auf einen gesunden unmittelbar oder durch Vermittlung von Zwischenträgern, an denen sie sich unverändert erhalten hatten, übergingen. An Stelle der miasmatisch-infektiösen Krankheiten setzte Pettenkofer die ektogene, an Stelle der kontagiösen die endogene.


Eine vollgültige Beweiskraft hatten allerdings jene Befunde nicht, denn allseitig geschlossen war die Beweiskette für die ätiologische Bedeutung jener Lebewesen nicht. Noch waren imbesonderen für die Infektionskrankheiten die Forderungen nicht erfüllt, die der Göttinger Anatom Jakob Henle in ätiologischer Hinsicht im Jahre 1840 in streng gefaßter Logik aufgestellt hatte und deren Erfüllung später im Laufe der weiteren Forschungen als unfehlbarer Schutz vor Trugschlüssen immer und immer wieder sich erproben sollte. Noch fehlte der Nachweis des ständigen Vorkommens des Erregers in allen Krankheitsfällen gleicher Art, noch war seine Reinzüchtung nicht gelungen und noch nicht die Übertragung des reingezüchteten Erregers
auf empfängliche Individuen der gleichen Art mit der Wirkung
der Auslösung des natürlichen Krankheitsbildes.

Mehr als 3 Jahrzehnte mußten noch vergehen, bis dieser
Trias von Forderungen für die Infektionskrankheiten des Men-
schen und der Haustiere einwandfrei entsprochen werden konnte.

Wegbereiter in dieser Richtung waren die Beobachtungen
und Wahrnehmungen über die Lebenserscheinungen und das
Wachstum der kleinsten Lebewesen, wie wir sie Schröter und
Ferdinand Cohn verdanken, bahnbrechend waren die Unter-
suchungen von Louis Pasteur über die Gärungen und über
die Fäulnis, war ferner die Einführung der Antisepsis in die
Chirurgie durch John Lister, waren weiter die Forschungen
über die Wundinfektionskrankheiten durch eine Reihe von nam-
haften Forschern und waren außerdem die mikroskopischen
Untersuchungen von Pollender, Brauell, Delafond und
Davaine, die Ende der 40er und in den 50er und 60er Jahren
des vorigen Jahrhunderts im Blute von an Milzbrand verendeten
Tieren Kleinlebewesen von bestimmter Form, unbewegliche,
farblose, stäbchenförmige Gebilde gesehen hatten. Ob aber diese
Gebilde lebende Wesen und ob sie namentlich als die Erreger
dieser Seuche anzusprechen waren, darüber bestand keine volle
Klarheit.

Gerade diese Tierseuche, der Milzbrand, war es nun, an den
die epochemachende, geniale Entdeckung von Robert Koch im
Jahre 1876 anknüpfte. Die ätiologische Erforschung dieser
Krankheit ist zum Grund- und Eckstein für die medizinisch-
bakteriologischen Forschungen überhaupt geworden.

Robert Koch ist es gelungen, den Milzbrandbazillus als
einen stäbchenförmigen Mikroorganismus mit bestimmten Form-
merkmalen in allen von ihm untersuchten Fällen von Milzbrand
nachzuweisen; er brachte ihn außerhalb des Tierkörpers in Reinkultur zur Entwicklung. Es ist ihm ferner gelungen, mit den in
Reinkultur gewonnenen Krankheitserregern künstlich das Bild
des Milzbrandes in typischer Weise wieder zu erzeugen. Damit
waren jene Forderungen restlos erfüllt, die Henle seinerzeit
aufgestellt hatte.

Den ganzen Formen- und Lebenskreis des Milzbranderreger
deckte Robert Koch auf. Er wies nach, daß er im Körper der
Haustiere in Form von stäbchenförmigen Gebilden mit besonde-
ren Merkmalen sich darbietet; er konnte die Umwandlung dieser Bazillen auf künstlichen Nährböden zu langen Fäden verfolgen, zu Fäden, in deren Innerem sich kleine runde, glänzende Körperchen, die Sporen, bildeten, die als Dauerformen des Krankheitserregers über eine außerordentliche Widerstandskraft verfügen und in der Außenwelt, im Boden trotz ungünstiger Witterungseinflüsse jahrelang lebens- und ansteckungsfähig sich erhalten können. Mit dem Futter oder Trinkwasser gelangen die Milzbrandsporen in den Darm der empfänglichen Tiere, nehmen hier wieder die Stäbchengestalt an, dringen in ihr Blut und in ihre Organe ein und führen rasch durch Blutvergiftung den Tod des Wirtstieres herbei.


Aus der Fülle überströmender neuer Entdeckungen, die die bakteriologische Forschung in ihrer Jugendzeit machte, ragt die des Tuberkelbazillus, des Erregers der Tuberkulose, durch Robert Koch selbst im Jahre 1882 als denkwürdige Großtat, auch durch die klassisch vollendete Form, in der diese Frucht genialer Forschertätigkeit dargeboten wurde, leuchtend hervor.


Wie wohl selten eine Entdeckung in der Medizin hat die Koch’sche epochemachend gewirkt, nicht nur auf dem Gebiete der Infektionskrankheiten des Menschen und der Tiere, sondern weit darüber hinaus. Die neue bakteriologische Ära, die durch Robert Koch eingeleitet wurde, hat der Entwicklung der gesamten Medizin während der letzten vergangenen Jahrzehnte ihren

Mit dem Hervortreten des ätiologischen Moments und seiner Ergründung stellte sich auch die experimentelle Forschung neu ein. Damit zusammenhängende Versuche hatten an Klarheit der Zielsetzung und an Sicherheit und Durchsichtigkeit der Beweisführung erheblich gewonnen.

Auf dem Gebiete der Infektionskrankheiten im besonderen hat die genaue Kenntnis der Krankheitserreger, ihrer Eigenschaften, ihrer Lebensweise und Lebensbedingungen, ihres Eindringens in den Organismus und der von ihnen hervorgerufenen Krankheitsscheinungen das Verständnis eröffnet und vertieft für die Natur, für die Ausbreitung und den Verlauf der Seuchen, für ihre sichere und zuverlässige Erkennung, für ihre gegenseitige scharfe Abgrenzung, für die zu ihrer Verhütung und Titätung zweckmäßigen Maßnahmen und nicht zuletzt für die spezifische Prophylaxis und Therapie.

Von dieser exakten Grundlage aus, wie sie jetzt für die Infektionskrankheiten gewonnen war, auf Grund der Erkenntnis, daß Infektion das Eindringen von bestimmten, genau charakterisierten Kleinlebewesen in den tierischen Körper bedeutet mit der Wirkung einer Krankheit, war der weiteren Forschung der Weg gewiesen.

Irrig wäre aber die Vorstellung, als genüge die Anwesenheit irgend eines krankmachenden Mikroorganismus für sich allein schon, um beim Menschen oder beim Tier eine Krankheit auszulösen. Eine solche Ansicht ist noch vielfach verbreitet. Eine gewisse Menge von krankmachenden Bakterien ist Voraussetzung zum Zustandekommen einer Infektion. Und die Pathogenität der Krankheitserreger, ihre krankmachende Fähigkeit ist — sowohl gemessen an Angehörigen verschiedener Tierspecies als auch an denen der gleichen und dazu noch an einer empfänglichen — keineswegs eine absolute, sondern nur eine relative. Deshalb ist schon von diesem Gesichtspunkte aus, ganz abgesehen von anderen Erwägungen, die allgemeine Furcht vor Bakterien, die sich schon äußert, wenn man nur dieses Wort auspricht, nicht angebracht. Es gibt keinen Krankheitserreger, der für den Menschen und alle Tierarten in gleicher Weise eine


Innere Schutzvorrichtungen des Körpers spielen bei der natürlichen Immunität eine Hauptrolle.

Alte humoral- und solidarypathologische Vorstellungen tauchten als feindliche Brüder aus der Versenkung wieder auf bei dem Versuch der Deutung des Phänomens der natürlichen Immunität. Metchnikoff sah die Ursache der Abwehrreaktion in Zellen, in den sogenannten Phagozyten, die nach seiner Ansicht Bakterien aufnehmen, verdauen und abtöten; Buchner dagegen schrieb den zellfreien Körpersäften und den in ihnen vertretenen Abwehrstoffen, dem Alexinen, die immunisierende Wirkung zu. Der heutige Standpunkt in dieser Frage bedeutet bis zu einem gewissen Grade eine Vermittlung dieser Anschauungen und macht im übrigen für die Erklärung der natürlichen Immunität dieselben Vorstellungen sich zu eigen wie
bei der Analyse der erworbenen Immunität, auf die ich später noch zu sprechen kommen werde.


Jene angeführten Beispiele von natürlicher Resistenz und natürlicher Immunität weisen nun aber auch darauf hin, daß sowohl von seiten des Krankheitserregers als auch von seiten des bedrohten Individuums gewisse Bedingungen erfüllt sein müssen, damit eine Infektion zustande kommt. Der Krankheitserreger muß über eine genügende Lebensenergie, über spezifische vitale Potenzen verfügen, er muß, wie man sich ausdrückt, mit einer ausreichenden Virulenz begabt sein, um in das tierische Gewebe einzudringen, sich entweder dort schrankenlos und rasch zu vermehren oder lokal oder allgemein wirkende Gifte zu bilden. Und der vom Krankheitserreger bedrohte Organismus muß disponiert sein, damit der Angriff nicht vergeblich ist. Virulenz einerseits und Disposition andererseits sind die das Zustandekommen der Infektion wesentlich bedingenden Faktoren; sie sind zugleich mitbestimmend für den Grad und für den Verlauf des Infektionsprozesses und von Seuchen. Virulenz und Disposition sind jedoch keineswegs einheitliche und auch nicht unveränderliche, vielmehr variable Größen; sie können beeinflußt werden nach der negativen wie nach der positiven Seite. Im
einzeln kann ich leider auf diese Fragen nicht näher eingehen.


Die Einführung der Schutzimpfung gegen die Pocken des Menschen durch Jenner im Jahre 1796 ist zum Markstein für diese Art von künstlicher Immunisierung geworden. Bei dieser Vakrination — wie man die aktive Immunisierung bei Pocken im besonderen und, hiervon abgeleitet, auch im allgemeinen bezeichnet — wird bekanntlich die Kuhpockenlymphke in die Haut des Menschen eingeimpft und so eine leichte lokale Impfkrankheit erzeugt, die ausreicht, um den Menschen für lange Zeit gegen die sehr gefährlichen Menschenpocken zu schützen, um
ihm eine Immunität zu verleihen. Da diese Art von Immunity durch selbsttätige Arbeit des Individuums als eine erhöhte Zellaktivität seines Organismus gegenüber dem mikroorganitären Eindringling sich ergibt, so bezeichnet man eine solche, durch eigenes Zutun herbeigeführte Immunität als aktive und die Stoffe, die jene zur Bildung von Immunkörpern oder Antikörpern führende Zellreaktion auslösen, ganz allgemein als „Antigene“. Im Gegensatz zu der aktiven Immunität, die von längerer Dauer ist, bei manchen Infektionskrankheiten auf das ganze Leben sich erstrecken kann, ist die passive nur kurzfristig, sie ist nur einigen Tage oder wenige Wochen wirksam. Dies ist auch leicht verständlich, denn bei dieser Form der Immunität, bei der passiven, handelt es sich um geliehene Schutzkörper, die mit dem Blutserum aktiv immuner Tiere auf bisher nicht geschützte übertragen wurden und die dieser verbraucht oder in verhältnismäßig kurzer Zeit wieder ausscheidet. Während die passive Immunität von längerer Dauer ist als die passive, bietet diese den Vorzug, daß sie alsbald wirksam wird; bei der aktiven dagegen vergeht immer eine gewisse Zeit, bis dies der Fall ist.

In Anlehnung an das Jenner’sche Pockenimpfverfahren und auf Grund der Erkenntnis, daß das Überstehen einer Infektionskrankheit, auch wenn sie in abgeschwächter Form auftritt, gegen eine nachfolgende stärkere Infektion schützt, hat nun Pasteur das Prinzip eingeführt, künstlich abgeschwächte Infektionserreger dem Impfling einzunähen, um ihn auf diese Weise gegen eine später drohende natürliche Infektion zu schützen. Solche Pasteur’schen Impfstoffe sind gegen Milzbrand, die Geflügelcholera, den Rotlauf der Schweine und die Tollwut hergestellt worden. Wenn auch die meisten dieser Impfstoffe, — außer dem gegen die Tollwut, der heutzutage noch angewandt wird, — jetzt durch wirksamere ersetzt sind, so leitete doch Pasteur mit seinem Impfverfahren die in der Folgezeit zu blühender Entfaltung gekommene Immunitätswissenschaft ein, mit deren geistvollem und scharfsinnigem Ausbau Träger bedeutender Namen wie Metchnikoff, Behring, Elrich, Pfeiffer, Buchner, Gruber, Wright, Bordet, Wassermann, Arrhenius, Madsen u. a. für immer verknüpft sind.

Wissenschaftlich bewegte Zeiten und ein manchmal in scharfer Form geführter Kampf der Geister haben in verhältnis-
mäßiger kurzer Zeit die Wissenschaft der Immunbiologie erstehen lassen.

Die Forschungen über die erworben Immunität ließen nun bald erkennen, daß ihr höchst komplizierte biologische Vorgänge zugrunde liegen und daß sie sich ihrem Wesen nach keineswegs in eine einheitliche, für alle Infektionskrankheiten gültige Erklärungsformel einzwängen läßt. Lassen Sie mich darauf noch mit einigen Worten eingehen.

Infektion und Immunität stehen — das dürfte aus den bisherigen Ausführungen zur Genüge hervorgehen — in engster Beziehung zu einander: die Infektion löst die Immunität aus. Bei der einen Infektionskrankheit sind es indessen die lebenden Infektiouserregre selbst, die der immun werdende Organismus abtötete, bei einer anderen seine Gifte, die sogenannten Toxine, deren Wirkung durch den immunen Organismus paralysiert werden. Daraus folgt, daß im ersten Falle die Immunität unmittelbar gegen die Erreger selbst gerichtet ist, im zweiten gegen die Toxine; und so ist denn dort die Immunität eine anitinfektiöse, hier eine antitoxische. Der Mechanismus der antitoxischen Immunität ist einfach, jener der anitinfektiösen kompliziert.


Die für die antitoxische Immunität zutreffenden Gesetze sind indessen keineswegs auch für die antinfektiöse gültig, hier liegen die Verhältnisse, wie schon angedeutet, wesentlich komplizierter. Die Abtötung der Bakterien im Organismus, die Bakteriolyse, beruht auf dem Zusammenwirken zweier Substanzen, von denen die eine bei der spezifischen Immunisierung neu-
gebildet oder doch in spezifisch gesteigertem Maße im Blutserum angehäuft wird, während die zweite in Betracht kommende Substanz ein normaler Bestandteil des Blutes ist.


Neben jenen Substanzen, die die Immunität bedingen, und ihr in Gestalt der Antitoxine oder der Bakteriolysine dienen, treten aber im immuren Körper, speziell in seinem Blutserum, als Reaktionsprodukte noch andere auf, die je nach ihrer Wirkung als Agglutinine, Opsonine, Bakteriotropine und Präzipitine bekannt sind. Alle diese Antikörper sind streng spezifisch, sie sind in ihrer Wirkung genau eingestellt auf diejenige biologisch aktive Substanz, auf das Antigen, das ihre Bildung ausgelöst hat. Um dies in einem Beispiel kurz auszudrücken: Ein Schutzserum, das gegen Milzbrand gewonnen wird, ist nur gegen den Erreger des Milzbrandes und nur gegen diese Krankheit wirksam, nicht auch gegen andere.

Es darf indessen noch bemerkt werden, daß die Immunität nicht nur rein humoral bedingt ist, die Schutzkörper also nicht nur im Blutserum auftreten, daß sie vielmehr auch noch auf einer Umstellung der Körperzellen beruht, eine Form der Immunität, die man als Gewebsimmunität bezeichnet.

Und noch eine weitere Erscheinung kommt am immunen Körper zum Ausdruck: Er ist gegenüber den zugehörigen spezifischen Antigenen empfindlicher geworden als der nicht immune. Eine solche veränderte Reaktionsfähigkeit des immunen Körpers geht unter dem Namen „Allergie“ oder, wenn sie als Überempfindlichkeit zum Ausdruck kommt, als „Anaphylaxie“.

Legen wir uns nun noch die Frage vor, welchen praktischen Zwecken denn alle diese immuno-biologischen Forschungen und die dadurch gewonnenen Ergebnisse dienen, so sind hier vor allem die bei Menschen- und Tierseuchen segensreichen Schutzimpfverfahren für die passive oder aktive Immunisierung zu nennen, zu denen Impfstoffe in Form von Sera oder Vaccins benutzt werden.

In der Veterinärmedizin sind als sehr wirksame Impfstoffe hauptsächlich im Gebrauch diejenigen gegen den Milzbrand, gegen die Rinderpest, gegen den Schweinerotlauf, die Schweinepest, gegen die Geflügelcholera, die Geflügelpocken und Geflügeldiphtherie, sowie gegen eine Reihe anderer Infektionskrankheiten, die ich im einzelnen hier nicht aufzählen will. Auch gegen die Aphetenseuche gehen wir neuerdings mit Impfungen in Gestalt der Schutz- und Notimpfung vor. Wenn auch bis jetzt der Erfolg und der Anwendungsbericht der Impfungen bei dieser Seuche nur ein beschränkter ist und nach Lage der Dinge vorläufig es nur sein kann, so bedeuten sie doch einen wesentlichen Fortschritt und tragen viel zu ihrer erfolgreichen Bekämpfung bei.

Ich möchte nicht verfehlen, unter den verschiedenen Impfstoffen und Impfverfahren eines hervorzuheben, das von dem früheren hessischen Landestierarzt, Geheimrat Prof. Dr. Lorenz in Darmstadt, der jetzt noch hochbetagt dort lebt, hergestellt wurde.

Schon Pasteur hatte, wie ich bereits erwähnte, ein aktives Impfverfahren gegen den Rotlauf der Schweine, eine früher

Das Lorenz'sche Schutzimpfverfahren wird seit dem Jahre 1892 alljährlich bei vielen Tausenden von Schweinen mit einem so glänzenden Erfolg angewandt, daß der Schweinerotlauf aufgehört hat, eine gefährliche Seuche zu sein und daß man die gegen ihn gerichteten veterinärpolizeilichen Maßnahmen aufheben könnte, wenn nicht andere Gesichtspunkte für ihre Beibehaltung sprächen.

Trotz der vielfachen Verschiebungen der Pferdebestände unseres Feldheeres in der Kriegszeit, trotz der häufig notwendig gewordenen Ergänzung der in Verlust geratenen Pferde durch Einfuhr aus dem stark verseuchten Osten, trotz der Neueinschleppung von zuvor unbekannten Seuchen in die Tierbestände der Armeen und des deutschen Heimatgebietes, trotz der bei der überstürzten Demobilmachung sehr erheblichen Ausbreitung von Ansteckungsmitteln aller Art in zahlreichen heimischen Haustierbeständen, ist es gelungen, den Tierseuchen erfolgreich zu begegnen, einige von ihnen so niederzuringen, daß sie wirtschaftlich so gut wie keine Rolle spielen und andere in der Nachkriegszeit neu aufgetretene aus Deutschland wieder vollständig zu verbannen.

Wenn dies in verhältnismäßig kurzer Zeit erreicht wurde, so ist es in hohem Maße der wissenschaftlichen Forschung zu verdanken, die uns die geeigneten Waffen in die Hand lieferte. Ohne die moderne Mikrobiologie, ohne tieferen Einblick in das Wesen der Seuchen, in die Vorgänge, wie sie der Infektion und der Immunität zugrunde liegen, hätte dieses Ziel unmöglich erreicht werden können.

So zeigt es sich auch hier wieder, daß die Wissenschaft, wenn sie auch zunächst rein erkenntnistheoretische Bahnen einschlägt, doch früher oder später praktisch sich auswirkt und dann dem allgemeinen Volkswohl die Aufwendungen mit Zinseszinsen wieder zurückgibt, die zu ihrer Pflege gemacht wurden.

Meine Damen und Herren!

Nur mit wenigen Strichen konnte ich die Geschichte der Mikrobiologie und der Immunitätswissenschaft, damit auch die der Seuchenforschung und Seuchenbekämpfung während der letzten 50 Jahre schildern. Ich glaube aber doch mit meinen Ausführungen gezeigt zu haben, daß die Wissenschaft auch auf diesem Gebiete die Entwicklung der Kultur in hohem Maße gefördert hat.

Infektionskrankheiten, die bei Mensch und Tier früher verheerend auftraten, sind in Fesseln gelegt oder gar ganz ausgerottet. Dies berechtigt trotz der erheblichen Schwierigkeiten, die noch eine Reihe von Infektionskrankheiten der Verwirk-
lichung der gleichen Absicht entgegensetzen, zu der zuversichtlichen Hoffnung, daß auch sie noch überwunden werden. Schon sind neue Bahnen auf dem Wege zu diesem Ziele vorgezeichnet.

Geordnete staatliche Verhältnisse und die stete Fürsorge des Staates für die Wissenschaft sind wesentliche Vorbedingungen zu diesem Ziele. Mögen sie uns — das wollen wir hoffen und wünschen — in immer zunehmendem Maße zuteil werden.
Literatur.
(In alphabetischer Reihenfolge.)


Frosch, Die Erforschung der Infektionskrankheiten in der Gegenwart. Berliner Tierärztliche Wochenschrift 1911, Seite 373.

Fröhner und Zwicke, Lehrbuch der Speziellen Pathologie und Therapie der Haustiere. 2. Band, Seuchenlehre, 1925.


Herxheimer, Krankheitslehre der Gegenwart. 1927.

His, Seuchenprobleme. Deutsche medizinische Wochenschrift 1925, Seite 299.


R. Koch, Gesammelte Werke. 1912


